Implementation of an 8-bit Low-power Multiplier based on Reversible Gate Technology

نویسندگان

  • Borui Li
  • Xiaowei Yu
  • Bo Zhang
  • Xingguo Xiong
  • Lawrence Hmurcik
چکیده

Reversible logic has attracted tremendous interest among the researchers in low power VLSI field due to their simple structure and improved energy efficiency. In this paper, the implementation of an 8-bit low power multiplier based on reversible gate technology is reported. The structure of the reversible gate multiplier consists of following components: the first part is the reversible partial product generator circuit (PPGC) which will be realized by reversible AND gate; the second part is constructed by several TSG gates whose function is to add the carryout of the previous level and PPCG of current level together. In the second part, some XNOR gates and NOR gates with improved designs to save power and speed up the performance are presented. The 8-bit reversible gate multiplier is designed and simulated in PSPICE. PSPICE simulation verifies the correct function of the multiplier. In order for comparison, an 8-bit static CMOS multiplier is also designed. PSPICE power simulation is used to simulate the power consumption of both reversible gate multiplier and the static CMOS multiplier for the same given input pattern sequence. Simulation results show that reversible gate multiplier leads to effective power saving compared to static CMOS multiplier. Keywords— Reversible logic, Reversible gate, Low power VLSI, Low power CMOS design.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Novel Design of Reversible Multiplier Circuit (TECHNICAL NOTE)

Adders and multipliers are two main units of the computer arithmetic processors and play an important role in reversible computations. The binary multiplier consists of two main parts, the partial products generation circuit (PPGC) and the reversible parallel adders (RPA). This paper introduces a novel reversible 4×4 multiplier circuit that is based on an advanced PPGC with Peres gates only. Ag...

متن کامل

Reversible Logic Multipliers: Novel Low-cost Parity-Preserving Designs

Reversible logic is one of the new paradigms for power optimization that can be used instead of the current circuits. Moreover, the fault-tolerance capability in the form of error detection or error correction is a vital aspect for current processing systems. In this paper, as the multiplication is an important operation in computing systems, some novel reversible multiplier designs are propose...

متن کامل

Modified 32-Bit Shift-Add Multiplier Design for Low Power Application

Multiplication is a basic operation in any signal processing application. Multiplication is the most important one among the four arithmetic operations like addition, subtraction, and division. Multipliers are usually hardware intensive, and the main parameters of concern are high speed, low cost, and less VLSI area. The propagation time and power consumption in the multiplier are always high. ...

متن کامل

FPGA Implementation On Reversible Floating Point Multiplier

Field programmable gate arrays (FPGA) are increasingly being used in the high performance and scientific computing community to implement floating-point based system. The reversible single precision floating point multiplier (RSPFPM) requires the design of reversible integer multiplier (2424) based on operand decomposition approach. Reversible logic is used to reduce the power dissipation than...

متن کامل

Novel Design of n-bit Controllable Inverter by Quantum-dot Cellular Automata

Application of quantum-dot is a promising technology for implementing digital systems at nano-scale.  Quantum-dot Cellular Automata (QCA) is a system with low power consumption and a potentially high density and regularity. Also, QCA supports the new devices with nanotechnology architecture. This technique works </...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014